version 0.1
[LbmBenchmarkKernelsPublic.git] / src / BenchKernelD3Q19ListAaRiaCommon.c
diff --git a/src/BenchKernelD3Q19ListAaRiaCommon.c b/src/BenchKernelD3Q19ListAaRiaCommon.c
new file mode 100644 (file)
index 0000000..7faf37b
--- /dev/null
@@ -0,0 +1,804 @@
+// --------------------------------------------------------------------------
+//
+// Copyright
+//   Markus Wittmann, 2016-2017
+//   RRZE, University of Erlangen-Nuremberg, Germany
+//   markus.wittmann -at- fau.de or hpc -at- rrze.fau.de
+//
+//   Viktor Haag, 2016
+//   LSS, University of Erlangen-Nuremberg, Germany
+//
+//  This file is part of the Lattice Boltzmann Benchmark Kernels (LbmBenchKernels).
+//
+//  LbmBenchKernels is free software: you can redistribute it and/or modify
+//  it under the terms of the GNU General Public License as published by
+//  the Free Software Foundation, either version 3 of the License, or
+//  (at your option) any later version.
+//
+//  LbmBenchKernels is distributed in the hope that it will be useful,
+//  but WITHOUT ANY WARRANTY; without even the implied warranty of
+//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+//  GNU General Public License for more details.
+//
+//  You should have received a copy of the GNU General Public License
+//  along with LbmBenchKernels.  If not, see <http://www.gnu.org/licenses/>.
+//
+// --------------------------------------------------------------------------
+#include "BenchKernelD3Q19ListAaRiaCommon.h"
+
+#include "Memory.h"
+#include "Vtk.h"
+
+#include <math.h>
+
+#ifdef _OPENMP
+       #include <omp.h>
+#endif
+
+// Forward definition.
+void FNAME(D3Q19ListAaRiaKernel)(LatticeDesc * ld, struct KernelData_ * kd, CaseData * cd);
+
+
+
+
+// -----------------------------------------------------------------------
+// Functions which are used as callback by the kernel to read or write
+// PDFs and nodes.
+
+static void FNAME(BCGetPdf)(KernelData * kd, int x, int y, int z, int dir, PdfT * pdf)
+{
+       Assert(kd != NULL);
+       Assert(kd->PdfsActive != NULL);
+       Assert(kd->PdfsActive == kd->Pdfs[0] || kd->PdfsActive == kd->Pdfs[1]);
+       Assert(pdf != NULL);
+
+       Assert(x >= 0); Assert(y >= 0); Assert(z >= 0);
+       Assert(x < kd->Dims[0]); Assert(y < kd->Dims[1]); Assert(z < kd->Dims[2]);
+       Assert(dir >= 0); Assert(dir < N_D3Q19);
+
+       KernelDataList * kdl = (KernelDataList *)kd;
+
+       if (kdl->Iteration % 2 == 0) {
+               // Pdfs are stored inverse, local PDFs are located in remote nodes
+
+               uint32_t nodeIndex = KDL(kd)->Grid[L_INDEX_4(kd->Dims, x, y, z)];
+
+               if (dir != D3Q19_C) {
+                       uint32_t adjListIndex = nodeIndex * N_D3Q19_IDX;
+
+                       *pdf = kd->PdfsActive[KDL(kd)->AdjList[adjListIndex + D3Q19_INV[dir]]];
+               }
+               else {
+                       *pdf = kd->PdfsActive[P_INDEX_3(KDL(kd)->nCells, nodeIndex, dir)];
+               }
+
+       }
+       else {
+               *pdf = kd->PdfsActive[P_INDEX_5(KDL(kd), x, y, z, dir)];
+       }
+
+
+       return;
+}
+
+static void FNAME(BCSetPdf)(KernelData * kd, int x, int y, int z, int dir, PdfT pdf)
+{
+       Assert(kd != NULL);
+       Assert(kd->PdfsActive != NULL);
+       Assert(kd->PdfsActive == kd->Pdfs[0] || kd->PdfsActive == kd->Pdfs[1]);
+       Assert(x >= 0); Assert(y >= 0); Assert(z >= 0);
+       Assert(x < kd->Dims[0]); Assert(y < kd->Dims[1]); Assert(z < kd->Dims[2]);
+       Assert(dir >= 0); Assert(dir < N_D3Q19);
+
+#if 0
+       if (isnan(pdf)) {
+               printf("ERROR: setting nan %d %d %d %d %s\n", x, y, z, dir, D3Q19_NAMES[dir]);
+               DEBUG_BREAK_POINT();
+               exit(1);
+       }
+#endif
+
+       KernelDataList * kdl = (KernelDataList *)kd;
+
+       if (kdl->Iteration % 2 == 0) {
+               // Pdfs are stored inverse, local PDFs are located in remote nodes
+
+               uint32_t nodeIndex = KDL(kd)->Grid[L_INDEX_4(kd->Dims, x, y, z)];
+
+               if (dir != D3Q19_C) {
+                       uint32_t adjListIndex = nodeIndex * N_D3Q19_IDX;
+
+                       kd->PdfsActive[KDL(kd)->AdjList[adjListIndex + D3Q19_INV[dir]]] = pdf;
+               }
+               else {
+                       kd->PdfsActive[P_INDEX_3(KDL(kd)->nCells, nodeIndex, dir)] = pdf;
+               }
+
+       }
+       else {
+               kd->PdfsActive[P_INDEX_5(KDL(kd), x, y, z, dir)] = pdf;
+       }
+
+       return;
+}
+
+
+static void GetNode(KernelData * kd, int x, int y, int z, PdfT * pdfs)
+{
+       Assert(kd != NULL);
+       Assert(kd->PdfsActive != NULL);
+       Assert(kd->PdfsActive == kd->Pdfs[0] || kd->PdfsActive == kd->Pdfs[1]);
+       Assert(pdfs != NULL);
+       Assert(x >= 0); Assert(y >= 0); Assert(z >= 0);
+       Assert(x < kd->Dims[0]); Assert(y < kd->Dims[1]); Assert(z < kd->Dims[2]);
+
+       KernelDataList * kdl = (KernelDataList *)kd;
+
+       if(kdl->Iteration % 2 == 0){
+
+               uint32_t nodeIndex = kdl->Grid[L_INDEX_4(kdl->kd.Dims, x, y, z)];
+               uint32_t adjListIndex = nodeIndex * N_D3Q19_IDX;
+
+               // Load PDFs of local cell: pdf_N = src[adjList[adjListIndex + D3Q19_S]]; ...
+               pdfs[D3Q19_C] = kd->PdfsActive[P_INDEX_3(kdl->nCells, nodeIndex, D3Q19_C)];
+
+               #define X(name, idx, idxinv, _x, _y, _z)        pdfs[idx] = kd->PdfsActive[kdl->AdjList[adjListIndex + idxinv]];
+               D3Q19_LIST_WO_C
+               #undef X
+
+       } else {
+
+               #define I(x, y, z, dir) P_INDEX_5(KDL(kd), (x), (y), (z), (dir))
+               #define X(name, idx, idxinv, _x, _y, _z)        pdfs[idx] = kd->PdfsActive[I(x, y, z, idx)];
+               D3Q19_LIST
+               #undef X
+               #undef I
+
+       }
+
+#if 0
+       for (int d = 0; d < 19; ++d) {
+               if(isnan(pdfs[d]) || isinf(pdfs[d])) {
+                       printf("%d %d %d %d nan! get node\n", x, y, z, d);
+                                               for (int d2 = 0; d2 < 19; ++d2) {
+                                                       printf("%d: %e\n", d2, pdfs[d2]);
+                                               }
+                       exit(1);
+               }
+       }
+#endif
+
+       return;
+}
+
+
+static void SetNode(KernelData * kd, int x, int y, int z, PdfT * pdfs)
+{
+       Assert(kd != NULL);
+       Assert(kd->PdfsActive != NULL);
+       Assert(kd->PdfsActive == kd->Pdfs[0] || kd->PdfsActive == kd->Pdfs[1]);
+       Assert(pdfs != NULL);
+
+       Assert(x >= 0); Assert(y >= 0); Assert(z >= 0);
+       Assert(x < kd->Dims[0]); Assert(y < kd->Dims[1]); Assert(z < kd->Dims[2]);
+
+#if 0
+       for (int d = 0; d < 19; ++d) {
+               if(isnan(pdfs[d])) {
+                       printf("%d %d %d %d nan! get node\n", x, y, z, d);
+                                               for (int d2 = 0; d2 < 19; ++d2) {
+                                                       printf("%d: %e\n", d2, pdfs[d2]);
+                                               }
+                       exit(1);
+               }
+       }
+#endif
+
+       KernelDataList * kdl = (KernelDataList *)kd;
+
+       if(kdl->Iteration % 2 == 0){
+
+               uint32_t nodeIndex = kdl->Grid[L_INDEX_4(kdl->kd.Dims, x, y, z)];
+               uint32_t adjListIndex = nodeIndex * N_D3Q19_IDX;
+
+               // Load PDFs of local cell: pdf_N = src[adjList[adjListIndex + D3Q19_S]]; ...
+               kd->PdfsActive[P_INDEX_3(kdl->nCells, nodeIndex, D3Q19_C)] = pdfs[D3Q19_C];
+
+               #define X(name, idx, idxinv, _x, _y, _z)        kd->PdfsActive[kdl->AdjList[adjListIndex + idxinv]] = pdfs[idx];
+               D3Q19_LIST_WO_C
+               #undef X
+
+       } else {
+
+               #define I(x, y, z, dir) P_INDEX_5(KDL(kd), (x), (y), (z), (dir))
+               #define X(name, idx, idxinv, _x, _y, _z)        kd->PdfsActive[I(x, y, z, idx)] = pdfs[idx];
+               D3Q19_LIST
+               #undef X
+               #undef I
+
+       }
+
+       return;
+}
+
+static void ParameterUsage()
+{
+       printf("Kernel parameters:\n");
+       printf("  [-blk <n>] [-blk-[xyz] <n>]\n");
+
+       return;
+}
+
+static void ParseParameters(Parameters * params, int * blk)
+{
+       Assert(blk != NULL);
+
+       blk[0] = 0; blk[1] = 0; blk[2] = 0;
+
+       #define ARG_IS(param)                   (!strcmp(params->KernelArgs[i], param))
+       #define NEXT_ARG_PRESENT() \
+               do { \
+                       if (i + 1 >= params->nKernelArgs) { \
+                               printf("ERROR: argument %s requires a parameter.\n", params->KernelArgs[i]); \
+                               exit(1); \
+                       } \
+               } while (0)
+
+
+       for (int i = 0; i < params->nKernelArgs; ++i) {
+               if (ARG_IS("-blk") || ARG_IS("--blk")) {
+                       NEXT_ARG_PRESENT();
+
+                       int tmp = strtol(params->KernelArgs[++i], NULL, 0);
+
+                       if (tmp <= 0) {
+                               printf("ERROR: blocking parameter must be > 0.\n");
+                               exit(1);
+                       }
+
+                       blk[0] = blk[1] = blk[2] = tmp;
+               }
+               else if (ARG_IS("-blk-x") || ARG_IS("--blk-x")) {
+                       NEXT_ARG_PRESENT();
+
+                       int tmp = strtol(params->KernelArgs[++i], NULL, 0);
+
+                       if (tmp <= 0) {
+                               printf("ERROR: blocking parameter must be > 0.\n");
+                               exit(1);
+                       }
+
+                       blk[0] = tmp;
+               }
+               else if (ARG_IS("-blk-y") || ARG_IS("--blk-y")) {
+                       NEXT_ARG_PRESENT();
+
+                       int tmp = strtol(params->KernelArgs[++i], NULL, 0);
+
+                       if (tmp <= 0) {
+                               printf("ERROR: blocking parameter must be > 0.\n");
+                               exit(1);
+                       }
+
+                       blk[1] = tmp;
+               }
+               else if (ARG_IS("-blk-z") || ARG_IS("--blk-z")) {
+                       NEXT_ARG_PRESENT();
+
+                       int tmp = strtol(params->KernelArgs[++i], NULL, 0);
+
+                       if (tmp <= 0) {
+                               printf("ERROR: blocking parameter must be > 0.\n");
+                               exit(1);
+                       }
+
+                       blk[2] = tmp;
+               }
+               else if (ARG_IS("-h") || ARG_IS("-help") || ARG_IS("--help")) {
+                       ParameterUsage();
+                       exit(1);
+               }
+               else {
+                       printf("ERROR: unknown kernel parameter.\n");
+                       ParameterUsage();
+                       exit(1);
+               }
+       }
+
+       #undef ARG_IS
+       #undef NEXT_ARG_PRESENT
+
+       return;
+}
+
+static void SetupConsecNodes(LatticeDesc * ld, KernelDataListRia * kdlr, int nThreads)
+{
+       Assert(ld != NULL);
+       Assert(kdlr != NULL);
+       Assert(nThreads > 0);
+
+       uint32_t * adjList = kdlr->kdl.AdjList;
+
+       uint32_t nConsecNodes = 0;
+       uint32_t consecIndex = 0;
+
+       int nFluid = kdlr->kdl.nFluid;
+
+       uint32_t * consecThreadIndices = (uint32_t *)malloc(sizeof(uint32_t) * (nThreads + 1));
+       int * fluidNodeThreadIndices = (int *)malloc(sizeof(int) * (nThreads + 1));
+
+       int nNodesPerThread = nFluid / nThreads;
+
+       for (int i = 0; i < nThreads; ++i) {
+               consecThreadIndices[i]     = i * nNodesPerThread + MinI(i, nFluid % nThreads);
+               fluidNodeThreadIndices[i] = consecThreadIndices[i];
+       }
+       consecThreadIndices[nThreads]     = -1;
+       fluidNodeThreadIndices[nThreads] = nFluid;
+
+       int indexThread = 1;
+
+       // We execute following code two times.
+       // - The first time to get the count of how many entries we need for the
+       //   consecNodes array.
+       // - The second time to fill the array.
+
+       // Loop over adjacency list of all nodes.
+    // Compare if adjacent nodes share the same access pattern.
+       for (int index = 1; index < nFluid; ++index) {
+
+               int different = 0;
+
+               // Loop over all directions except the center one.
+               for(int d = 0; d < N_D3Q19 - 1; ++d) {
+                       Assert(d != D3Q19_C);
+
+                       if (adjList[index * N_D3Q19_IDX + d] != adjList[(index - 1) * N_D3Q19_IDX + d] + 1) {
+                               // Different access pattern.
+                               different = 1;
+                               break;
+                       }
+               }
+
+               if (consecThreadIndices[indexThread] == index) {
+                       // We are at a thread boundary. Starting from this index the fluids
+                       // belong to another thread. Force a break, if nodes are consecutive.
+                       ++indexThread;
+                       different = 1;
+               }
+
+               if (different) {
+                       ++consecIndex;
+               }
+       }
+
+       if (nFluid > 0) {
+               nConsecNodes = consecIndex + 1;
+       }
+
+       uint32_t * consecNodes;
+       MemAlloc((void **)&consecNodes, sizeof(uint32_t) * nConsecNodes);
+
+       consecIndex = 0;
+
+       if (nFluid > 0) {
+               consecNodes[consecIndex] = 1;
+       }
+
+       indexThread = 1;
+       consecThreadIndices[0] = 0;
+
+       // Loop over adjacency list of all nodes.
+    // Compare if adjacent nodes share the same access pattern.
+       for (int index = 1; index < nFluid; ++index) {
+
+               int different = 0;
+
+               // Loop over all directions except the center one.
+               for(int d = 0; d < N_D3Q19 - 1; ++d) {
+                       Assert(d != D3Q19_C);
+
+                       if (adjList[index * N_D3Q19_IDX + d] != adjList[(index - 1) * N_D3Q19_IDX + d] + 1) {
+                               // Different access pattern.
+                               different = 1;
+                               break;
+                       }
+               }
+
+               if (consecThreadIndices[indexThread] == index) {
+                       // We are at a thread boundary. Starting from this index the fluids
+                       // belong to another thread. Force a break, if nodes are consecutive.
+                       consecThreadIndices[indexThread] = consecIndex + 1;
+                       ++indexThread;
+                       different = 1;
+               }
+
+               if (different) {
+                       ++consecIndex;
+                       Assert(consecIndex < nConsecNodes);
+                       consecNodes[consecIndex] = 1;
+               }
+               else {
+                       Assert(consecIndex < nConsecNodes);
+                       consecNodes[consecIndex] += 1;
+               }
+       }
+
+
+       kdlr->ConsecNodes = consecNodes;
+       kdlr->nConsecNodes = nConsecNodes;
+
+       kdlr->ConsecThreadIndices  = consecThreadIndices;
+       kdlr->nConsecThreadIndices = nThreads;
+
+       kdlr->FluidNodeThreadIndices = fluidNodeThreadIndices;
+       kdlr->nFluidNodeThreadIndices = nThreads;
+
+       printf("# total fluid nodes: %d   consecutive blocks: %d\n", nFluid, nConsecNodes);
+
+       return;
+}
+
+void FNAME(D3Q19ListAaRiaInit)(LatticeDesc * ld, KernelData ** kernelData, Parameters * params)
+{
+       KernelData * kd;
+       KernelDataList * kdl;
+       KernelDataListRia * kdlr;
+       MemAlloc((void **)&kdlr, sizeof(KernelDataListRia));
+
+       kd = (KernelData *)kdlr;
+       kdl = KDL(kdlr);
+
+       *kernelData = kd;
+
+#ifdef DEBUG
+       kd->Pdfs[0] = NULL;
+       kd->Pdfs[1] = NULL;
+       kd->PdfsActive = NULL;
+       kd->DstPdfs = NULL;
+       kd->SrcPdfs = NULL;
+       kd->Dims[0] = -1;
+       kd->Dims[1] = -1;
+       kd->Dims[2] = -1;
+       kd->GlobalDims[0] = -1;
+       kd->GlobalDims[1] = -1;
+       kd->GlobalDims[2] = -1;
+       kd->Offsets[0] = -1;
+       kd->Offsets[1] = -1;
+       kd->Offsets[2] = -1;
+
+       kd->ObstIndices = NULL;
+       kd->nObstIndices = -1;
+       kd->BounceBackPdfsSrc = NULL;
+       kd->BounceBackPdfsDst = NULL;
+       kd->nBounceBackPdfs = -1;
+
+       kdl->AdjList = NULL;
+       kdl->Coords = NULL;
+       kdl->Grid = NULL;
+       kdl->nCells = -1;
+       kdl->nFluid = -1;
+
+       kdlr->ConsecNodes = NULL;
+       kdlr->nConsecNodes = 0;
+       kdlr->ConsecThreadIndices = NULL;
+       kdlr->nConsecThreadIndices = 0;
+#endif
+
+       // Ajust the dimensions according to padding, if used.
+       kd->Dims[0] = kd->GlobalDims[0] = ld->Dims[0];
+       kd->Dims[1] = kd->GlobalDims[1] = ld->Dims[1];
+       kd->Dims[2] = kd->GlobalDims[2] = ld->Dims[2];
+
+       int * lDims = ld->Dims;
+
+       int lX = lDims[0];
+       int lY = lDims[1];
+       int lZ = lDims[2];
+
+       int nTotalCells = lX * lY * lZ;
+       int nCells = ld->nFluid; // TODO: + padding
+       int nFluid = ld->nFluid;
+
+       kdl->nCells = nCells;
+       kdl->nFluid = nFluid;
+
+       PdfT * pdfs[2];
+
+       int blk[3] = { 0 };
+
+       ParseParameters(params, blk);
+
+       if (blk[0] == 0) blk[0] = lX;
+       if (blk[1] == 0) blk[1] = lY;
+       if (blk[2] == 0) blk[2] = lZ;
+
+       printf("# blocking               x: %3d y: %3d z: %3d\n", blk[0], blk[1], blk[2]);
+
+       double latMiB      = nCells * sizeof(PdfT) * N_D3Q19 / 1024.0 / 1024.0;
+       double latFluidMib = nFluid * sizeof(PdfT) * N_D3Q19 / 1024.0 / 1024.0;
+       double latPadMib   = (nCells - nFluid) * sizeof(PdfT) * N_D3Q19 / 1024.0 / 1024.0;
+
+       printf("# lattice size:          %e MiB\n", latMiB);
+       printf("# fluid lattice size:    %e MiB\n", latFluidMib);
+       printf("# lattice padding:       %e MiB\n", latPadMib);
+
+#define PAGE_4K                4096
+
+       printf("# aligning lattices to:  %d b\n", PAGE_4K);
+
+       MemAllocAligned((void **)&pdfs[0], sizeof(PdfT) * nCells * N_D3Q19, PAGE_4K);
+
+       kd->Pdfs[0] = pdfs[0];
+
+       // Initialize PDFs with some (arbitrary) data for correct NUMA placement.
+       // Here we touch only the fluid nodes as this loop is OpenMP parallel and
+       // we want the same scheduling as in the kernel.
+       #ifdef _OPENMP
+               #pragma omp parallel for
+       #endif
+       for (int i = 0; i < nFluid; ++i) { for(int d = 0; d < N_D3Q19; ++d) {
+               pdfs[0][P_INDEX_3(nCells, i, d)] = 1.0;
+       } }
+
+       // Initialize all PDFs to some standard value.
+       for (int i = 0; i < nFluid; ++i) { for(int d = 0; d < N_D3Q19; ++d) {
+               pdfs[0][P_INDEX_3(nCells, i, d)] = 0.0;
+       } }
+
+       // ----------------------------------------------------------------------
+       // create grid which will hold the index numbers of the fluid nodes
+
+       uint32_t * grid;
+
+       if (MemAlloc((void **)&grid, nTotalCells * sizeof(uint32_t))) {
+               printf("ERROR: allocating grid for numbering failed: %lu bytes.\n", nTotalCells * sizeof(uint32_t));
+               exit(1);
+       }
+       kdl->Grid = grid;
+
+       int latticeIndex;
+
+#ifdef DEBUG
+       for(int z = 0; z < lZ; ++z) {
+               for(int y = 0; y < lY; ++y) {
+                       for(int x = 0; x < lX; ++x) {
+
+                               latticeIndex = L_INDEX_4(ld->Dims, x, y, z);
+
+                               grid[latticeIndex] = ~0;
+                       }
+               }
+       }
+#endif
+
+       // ----------------------------------------------------------------------
+       // generate numbering over grid
+
+       uint32_t * coords;
+
+       if (MemAlloc((void **)&coords, nFluid * sizeof(uint32_t) * 3)) {
+               printf("ERROR: allocating coords array failed: %lu bytes.\n", nFluid * sizeof(uint32_t) * 3);
+               exit(1);
+       }
+
+       kdl->Coords = coords;
+
+       // Index for the PDF nodes can start at 0 as we distinguish solid and fluid nodes
+       // through the ld->Lattice array.
+       int counter = 0;
+
+       // Blocking is implemented via setup of the adjacency list. The kernel later will
+       // walk through the lattice blocked automatically.
+       for (int bZ = 0; bZ < lZ; bZ += blk[2]) {
+       for (int bY = 0; bY < lY; bY += blk[1]) {
+       for (int bX = 0; bX < lX; bX += blk[0]) {
+
+               int eX = MIN(bX + blk[0], lX);
+               int eY = MIN(bY + blk[1], lY);
+               int eZ = MIN(bZ + blk[2], lZ);
+
+
+               for (int z = bZ; z < eZ; ++z) {
+               for (int y = bY; y < eY; ++y) {
+               for (int x = bX; x < eX; ++x) {
+
+                       latticeIndex = L_INDEX_4(lDims, x, y, z);
+
+                       if (ld->Lattice[latticeIndex] != LAT_CELL_OBSTACLE) {
+                               grid[latticeIndex] = counter;
+
+                               coords[C_INDEX_X(counter)] = x;
+                               coords[C_INDEX_Y(counter)] = y;
+                               coords[C_INDEX_Z(counter)] = z;
+
+                               ++counter;
+                       }
+               } } }
+       } } }
+
+       Verify(counter == nFluid);
+
+       uint32_t * adjList;
+
+       double indexMib = nFluid * sizeof(uint32_t) * N_D3Q19_IDX / 1024.0 / 1024.0;
+
+       printf("# index size:            %e MiB\n", indexMib);
+
+       // AdjList only requires 18 instead of 19 entries per node, as
+       // the center PDF needs no addressing.
+       if (MemAlloc((void **)&adjList, nFluid * sizeof(uint32_t) * N_D3Q19_IDX)) {
+               printf("ERROR: allocating adjList array failed: %lu bytes.\n", nFluid * sizeof(uint32_t) * N_D3Q19_IDX);
+               exit(1);
+       }
+
+       kdl->AdjList = adjList;
+
+       int x, y, z;
+
+       uint32_t neighborIndex;
+       uint32_t dstIndex;
+
+       int nx, ny, nz, px, py, pz;
+
+       // Loop over all fluid nodes and compute the indices to the neighboring
+       // PDFs for configured data layout (AoS/SoA).
+       // TODO: Parallelized loop to ensure correct NUMA placement.
+       // #ifdef _OPENMP  --> add line continuation
+       //      #pragma omp parallel for default(none)
+       //              shared(nFluid, nCells, coords, D3Q19_INV, D3Q19_X, D3Q19_Y, D3Q19_Z,
+       //                              stderr,
+       //                              lDims, grid, ld, lX, lY, lZ, adjList)
+       //              private(x, y, z, nx, ny, nz, neighborIndex, dstIndex)
+       // #endif
+       for (int index = 0; index < nFluid; ++index) {
+               x = coords[C_INDEX_X(index)];
+               y = coords[C_INDEX_Y(index)];
+               z = coords[C_INDEX_Z(index)];
+
+               Assert(x >= 0 && x < lX);
+               Assert(y >= 0 && y < lY);
+               Assert(z >= 0 && z < lZ);
+
+               Assert(ld->Lattice[L_INDEX_4(lDims, x, y, z)] != LAT_CELL_OBSTACLE);
+
+               // Loop over all directions except the center one.
+               for(int d = 0; d < N_D3Q19 - 1; ++d) {
+                       Assert(d != D3Q19_C);
+
+#ifdef PROP_MODEL_PUSH
+                       nx = x + D3Q19_X[d];
+                       ny = y + D3Q19_Y[d];
+                       nz = z + D3Q19_Z[d];
+
+#elif PROP_MODEL_PULL
+                       nx = x - D3Q19_X[d];
+                       ny = y - D3Q19_Y[d];
+                       nz = z - D3Q19_Z[d];
+#else
+                       #error No implementation for this PROP_MODEL_NAME.
+#endif
+                       // If the neighbor is outside the latcie in X direction and we have a
+                       // periodic boundary then we need to wrap around.
+                       if (    ((nx < 0 || nx >= lX) && ld->PeriodicX) ||
+                                       ((ny < 0 || ny >= lY) && ld->PeriodicY) ||
+                                       ((nz < 0 || nz >= lZ) && ld->PeriodicZ)
+                                                                                                                               ){
+                               // x periodic
+
+                               if (nx < 0) {
+                                       px = lX - 1;
+                               }
+                               else if (nx >= lX) {
+                                       px = 0;
+                               } else {
+                                       px = nx;
+                               }
+                               // y periodic
+                               if (ny < 0) {
+                                       py = lY - 1;
+                               }
+                               else if (ny >= lY) {
+                                       py = 0;
+                               } else {
+                                       py = ny;
+                               }
+
+                               // z periodic
+                               if (nz < 0) {
+                                       pz = lZ - 1;
+                               }
+                               else if (nz >= lZ) {
+                                       pz = 0;
+                               } else {
+                                       pz = nz;
+                               }
+
+                               if (ld->Lattice[L_INDEX_4(lDims, px, py, pz)] == LAT_CELL_OBSTACLE) {
+                                       dstIndex = P_INDEX_3(nCells, index, D3Q19_INV[d]);
+                               }
+                               else {
+                                       neighborIndex = grid[L_INDEX_4(lDims, px, py, pz)];
+
+                                       AssertMsg(neighborIndex != ~0, "Neighbor has no Index. (%d %d %d) direction %s (%d)\n", px, py, pz, D3Q19_NAMES[d], d);
+
+                                       dstIndex = P_INDEX_3(nCells, neighborIndex, d);
+                               }
+                       }
+                       else if (nx < 0 || ny < 0 || nz < 0 || nx >= lX || ny >= lY || nz >= lZ) {
+                               dstIndex = P_INDEX_3(nCells, index, D3Q19_INV[d]);
+                       }
+                       else if (ld->Lattice[L_INDEX_4(lDims, nx, ny, nz)] == LAT_CELL_OBSTACLE) {
+                               dstIndex = P_INDEX_3(nCells, index, D3Q19_INV[d]);
+                       }
+                       else {
+                               neighborIndex = grid[L_INDEX_4(lDims, nx, ny, nz)];
+
+                               Assert(neighborIndex != ~0);
+
+                               dstIndex = P_INDEX_3(nCells, neighborIndex, d);
+                       }
+
+                       Assert(dstIndex >= 0);
+                       Assert(dstIndex < nCells * N_D3Q19);
+
+                       adjList[index * N_D3Q19_IDX + d] = dstIndex;
+               }
+       }
+
+       int nThreads = 1;
+
+#ifdef _OPENMP
+       nThreads = omp_get_max_threads();
+#endif
+
+       SetupConsecNodes(ld, KDLR(kd), nThreads);
+
+       double loopBalanceEven = 2.0 * 19 * sizeof(PdfT);
+       double loopBalanceOdd  = 2.0 * 19 * sizeof(PdfT) + (double)kdlr->nConsecNodes / nFluid * (18 * 4.0 + 4.0);
+       double loopBalance     = (loopBalanceEven + loopBalanceOdd) / 2.0;
+
+       printf("# loop balance:          %.2f B/FLUP  even: %.2f B/FLUP  odd %.2f B/FLUP\n",
+                       loopBalance, loopBalanceEven, loopBalanceOdd);
+
+       // Fill remaining KernelData structures
+       kd->GetNode = GetNode;
+       kd->SetNode = SetNode;
+
+       kd->BoundaryConditionsGetPdf = FNAME(BCGetPdf);
+       kd->BoundaryConditionsSetPdf = FNAME(BCSetPdf);
+
+       kd->Kernel = FNAME(D3Q19ListAaRiaKernel);
+
+       kd->DstPdfs = NULL;
+       kd->PdfsActive = kd->Pdfs[0];
+
+       return;
+}
+
+void FNAME(D3Q19ListAaRiaDeinit)(LatticeDesc * ld, KernelData ** kernelData)
+{
+       KernelDataListRia ** kdlr = (KernelDataListRia **)kernelData;
+
+       MemFree((void **)&((*kdlr)->ConsecNodes));
+
+       if ((*kdlr)->ConsecThreadIndices != NULL) {
+               MemFree((void **)&((*kdlr)->ConsecThreadIndices));
+       }
+
+       if ((*kdlr)->FluidNodeThreadIndices != NULL) {
+               MemFree((void **)&((*kdlr)->FluidNodeThreadIndices));
+       }
+
+       KernelDataList ** kdl = (KernelDataList **)kernelData;
+
+       MemFree((void **)&((*kdl)->AdjList));
+       MemFree((void **)&((*kdl)->Coords));
+       MemFree((void **)&((*kdl)->Grid));
+
+       MemFree((void **)&((*kernelData)->Pdfs[0]));
+
+       MemFree((void **)kernelData);
+       return;
+}
+
This page took 0.065437 seconds and 5 git commands to generate.